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Summary 
The Integrated Force Method has been developed in recent 

years for the analysis of structural mechanics problems. This 
method treats all independent internal forces as unknown 
variables that can be calculated by simultaneously imposing 
equations of equilibrium and compatibility conditions. In this 
paper a finite element library for analyzing two-dimensional 
problems by the Integrated Force Method is presented. 
Triangular- and quadrilateral-shaped elements capable of mod- 
eling arbitrary domain configurations are presented. The ele- 
ment equilibrium and flexibility matrices are derived by 
discretizing the expressions for potential and complementary 
energies, respectively. The displacement and stress fields within 
the finite elements are independently approximated. The dis- 
placement field is interpolated as it is in the standard displace- 
ment method, and the stress field is approximated by using 
complete polynomials of the correct order. A procedure that 
uses the definitions of stress components in terms of an Airy 
stress function is developed to derive the stress interpolation 
polynomials. Such derived stress fields identically satisfy the 
equations of equilibrium. Moreover, the resulting element 
matrices are insensitive to the orientation of local coordinate 
systems. A method is devised to calculate the number of rigid 
body modes, and the present elements are shown to be free of 
spurious zero-energy modes. A number of example problems 
are solved by using the present library, and the results are 
compared with corresponding analytical solutions and with 
results from the standard displacement finite element method. 
The Integrated Force Method not only gives results that agree 
well with analytical and displacement method results but also 
outperforms the displacement method in stress calculations. 

Introduction 
The finite element stiffness method, which is based on an 

assumed displacement field, has become the method of choice 
for solving a wide variety of problems in structural mechanics. 
The advantages of the stiffness method include (1) the capabil- 
ity to efficiently and accurately model domains with complex 
geometric configurations and varying material properties and 
(2) the capability to accurately analyze problems with geo- 
metrical and material nonlinearities. The development of finite 
stiffness elements and their corresponding formulations has 
been a subject of extensive research, much of which has been 
summarized in textbooks such as references 1 to 3. 

Shortcomings of the assumed displacement method have 
been observed in the analyses of certain classes of problems, 
such as modeling nearly incompressible materials, bending of 
thin plates, and optimizing structures (refs. 4 and 5). Moreover, 
since stresses are calculated indirectly by using displacement 
derivatives, the accuracy of stress predictions may be reduced. 
Two alternative finite element formulations may be utilized to 
analyze the aforementioned problems and to calculate stress 
more accurately: (1) the hybrid stress method (refs. 6 to S), and 
(2) the force method (refs. 9 to 11). Because both of these 
formulations have certain disadvantages compared to the 
assumed displacement method, their use and availability in 
general purpose programs has been limited. In the hybrid 
method, the flexibility matrix must be inverted in order to 
generate the element stiffness matrix; this can become a com- 
putational burden, especially if high order approximations of 
stress fields are required. In the standard force method, on the 
other hand, an auxiliary statically determinate structure and a 
corresponding set of redundant forces must be selected. This 



process is not easily adapted to computer automation. Several 
attempts have been made to improve the process by which 
redundancies are selected. The pertinent formulations were 
summarized by Kaneko et al. (ref. 5). All of these procedures, 
however, either resulted in matrices with certain undesired 
properties or lacked aphysical interpretation, which made them 
unattractive to the engineering community and led to the 
demise of the standard force method. 

An alternate formulation, termed theIntegratedForce Method, 
has been developed in recent years to analyze problems in 
structural mechanics (refs. 12 to 15). In the Integrated Force 
Method all independent forces, not just the redundants, are 
treated as unknown quantities that can be calculated by simul- 
taneously imposing both equilibrium and compatibility condi- 
tions. Procedures have been developed (refs. 16 to 19) for 
generating compatibility conditions that yield sparse and banded 
matrices and can be easily adapted to computer automation. 
The initial applications of the Integrated Force Method to static 
analysis (ref. 20), vibration analysis (ref. 21), and optimization 
of trusses (ref. 22) have shownthat theIntegratedForceMethod 
has certain advantages over the displacement method, both in 
accuracy and computer efficiency. 

This study presents formulations to develop finite elements 
for two-dimensional structural analysis and a comprehen- 
sive finite element library of two-dimensional elements. Both 
triangular- and quadrilateral-shaped elements capable of mod- 
eling arbitrary configurations of the domains being analyzed 
are considered. The displacement and stress fields within an 
element are independently approximated. The displacement 
field is interpolated by using the functions employed in the 
standard displacement method. Stress fields are approximated 
by using complete polynomials of the appropriate order, whose 
coefficients are unknown independent forces. The equations 
describing the components of the stress tensor can be derived 
from the Airy stress function for an element, which is written 
in terms of a complete polynomial of a certain order. The 
resulting stress fields identically satisfy the equations of equi- 
librium. The element matrices generated with these stress fields 
are not sensitive to the orientation of the element's local 
coordinate system. A method to calculate the number of zero- 
energy modes is also developed, and the present elements are 
shown to be free of spurious zero-energy modes. The effect of 
reducing the number of the element's independent forces is also 
investigated. 

To establish the validity of the elements and to assess their 
relative performances and compae the IntegratedForce Method 
with the well established displacement method, the present 
library is usedto solve avariety of problems in two-dimensional 
elasticity. The results obtained with these elements are also 
compared with the corresponding analytical solutions, and 
there is good agreement. For stress calculations, the Integrated 
Force Method performs better than the standard displacement 
method. 

Development of the Finite Elements 
Governing Equations of the Integrated Force Method 

The governing equations of the Integrated Force Method are 
briefly presented here in order to introduce the notation. Sym- 
bols used are defined in appendix A. (A detailed description of 
the formulation can be found in refs. 12 to 14.) Finite elements 
are used to discretize a continuous object, which then has Nt 
displacement degrees of freedom and m independent forces. In 
the Integrated Force Method all independent forces represent 
unknown quantities, not just the redundants, as is the case in the 
standard force method (refs. 9 to 11). The unknown forces are 
obtained from the following sets of equations: 

which represents n equations of equilibrium, written for nodes 
where displacements are unknown, and 

which represents r = m - n compatibility conditions. 
Here n = Nt- N,; N, is the number of prescribeddisplacement 

degrees of freedom; {F} is the rn-component vector of un- 
known independent forces; IB,] is the n x m part of the system 
equilibrium matrix corresponding to the nodes where external 
loads are prescribed; [GI is the m x m system flexibility matrix; 
[C] is the r x m compatibility matrix; { P} is the n-component 
vector of equivalent nodal loads; and { 6,) is the r-component 
effective deformation vector, which is calculated as 

where {Po} is the vector of initial deformations. The generation 
of compatibility conditions is described in detail in references 
16 to 19. Sets of equations (1) and (2) can be combined to obtain 
the system of equations for unknown forces as 

where 

[SI=[ [CllGI '"'1 and { P * } = { ~ ~ ~  ( 5 )  

After the force vectoris calculated from equation (4), the vector 
of unknown nodal displacements { U} can be obtained as 
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where [Jl is then x m deformation matrix that represents the top 
n rows of the transpose of the matrix [SI-'. The vector of 
unknown support reactions { R} can be calculated from 

where [BJ is the portion of the system equilibrium matrix that 
corresponds to nodes with prescribed displacement boundary 
conditions. 

Element Matrices 

From equations (1) and (2) we see that the system of 
equations for the unknown forces consists of two sets of 
relations: (1) equations of equilibrium and (2) compatibility 
conditions, which can be expressed in terms of forces by using 
the strain-stress law. These sets of relations are first established 
on the element level, and then the assembly procedure (refs. 13 
and 14) is used to derive the system given in equation (4). 

Equilibrium equations and deformation-force relations for a 
finte element may be written as 

where {Pe} is the vector of equivalent nodal forces for the 
element e; IF,} is the element vector of independent forces; 
[Be] and [GJ are element equilibrium and flexibility matrices, 
respectively; and { p,} is the vector of element deformations. 
Note that equation (8b) represents the discretized constitutive 
relations for the element. The components of the vector { Pe 
are the generalized deformations that correspond to internal 
forces {Fe}. 

The expressions for the two element matrices can be derived 
by using the expressions for potential and complementary 
energy, respectively. In the Integrated Force Method, indepen- 
dent displacement and stress interpolations are employed to 
give 

Here { u } ~  = { u v} and { o}T = {ox oj, zV} are the displacement 
and stress vectors at a location within the element; { Ue} is the 
vector of element nodal displacements; [N] is the matrix of 
displacement interpolation functions; and Ty] is the stress 
interpolation matrix. The strain vector, { E } ~  = { E X  ~y yV}, is 
obtained by differentiation of the displacement field and is 
given as 

{El = [ZIWJ (1 1) 

where [Z] = [L] [Nl, and [L] is the matrix of differential 
operators. 
Equilibrium mubix.-The expression for the element equi- 

librium matrix can be obtained from the strain energy Ap of the 
element: 

where Vdenotes the domain of the element in the discrete form. 
Substituting equations (10) and (1 1) into equation (12) yields 
the strain energy Ap expressed as 

where the equilibrium matrix [Be] is 

FZexibility mutrix.-The expression for the element flex- 
ibility matrix can be obtained from the complementary energy 
A, of the element: 

where [D] is the compliance matrix of the material, in the 
discrete form. Substituting equation (10) into equation (15) 
gives A, as 

where the element flexibility matrix [G,] is 

Stress Field Approximations 

The approximation of the stress components and the con- 
struction of the stress interpolation matrix [Y] is discussed in 
this section. Note that in equations (14) and (17) the matrix [y1 
appears in both the equilibrium and the flexibility matrix 
definitions. It is, therefore, important to properly devise stress 
interpolation polynomials in order to obtain accurate results. In 
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this study, a method was developed that uses an Airy stress 
function given in terns of complete polynomials. 

The Airy stress function @ for a location (x ,  y )  within an 
element can be written as a complete polynomial of order p: 

Rewriting equations (19) yields 

P-2 

ox =c F;.+lxP-j-2 j (20a) Y 

V 
j=O 

Shape Nodes 

4Y 

j=O 

Forces Name 

3 TRIO3 03 

where Cj , for j = 0,1,2 ,..., p, are constants, and x and y are 
Cartesian coordinates of the point in the local coordinate system 
of the element. The local coordinate systems for various ele- 
ment shapes are depicted in figure 1. The components of the 
stress tensor can be obtained by using the definition of the stress 
function (ref. 23) as follows: 

ax 

j=O 

13 QUAM-1 3 
15 QUA081 5 

18 QUAO8-18 

j=O 

P-2 Now the coefficients of the polynomials in equations (20) can 
be considered element forces 4, fori = 1,2, ..., 3@ - l), and 6 
can be expressed in terms of @ + 1) constants Cj : 

j=O 

r;l: = $( Co, el,. . . , C p )  for i = 1,2,. . ., 3(p - 1) (21) 

where $i are linear functions of constants C' Thus, not all forces 4 are linearly independent. Final stress field interpolation 

P-2 

CT =E C j ( p -  j)(p-j-l)x p-2-j  y j (19b) Y 
j=O 

D-2 

j=O 

9 TR106-09 
11 TR106-11 
12 TR106-12 

polynomials can be obtained by eliminating the dependent 
forces; this results in (p + 1) independent forces when the stress 
function @ is written as acompletepolynomial of orderp. Such 
stress fields are complete polynomials of order (p - 2). Expres- 
sions for the stress fields used in this study are provided in 
appendix B. 

The preceding procedure can be demonstrated by deriving 
the linear terms. For this case, the stress function is represented 
as a complete cubic polynomial. 

@(x, y )  = c 0 x 3  + c 1 x 2 y  + c 2 x y 2  + c3y3 (22) 

Substituting p = 3 into equations (19) yields the following 
expressions for the stress components: 

where the superscript 1 denotes the linear terms in the stress 
polynomials. From equations (23) we see that six coeffi- 
cients 4 are expressed in terms of four independent constants 
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Cj; thus, only four 4 forces are linearly independent. By 
eliminating two forces from equations (23), we have obtained 
the linear stress terms given in equations (32). The constant, 
quadratic, and cubic terms can be derived similarly, and the 
corresponding stress terms are given in equations (B l), (B3), 
and (B4), respectively. Stress field representations in terms of 
acomplete polynomial of orderp can be obtained by combining 
the expressions for orders OJ.2, ..4. The resulting cubic stress 
field interpolation, which is given in equations (B5), contains 
18 independent forces. The constant stress field can be obtained 
by retaining the first 3 forces in equations (B5); for the linear 
interpolation, the fist  7 forces are retained, and for the qua- 
dratic interpolation, the first 12 forces are retained. The stress 
fields given in equations (B1) to (B4) identically satisfy the 
equations of equilibrium at any point inside the domain of the 
element. The resulting element matrices have the correct rank 
for arbitrary orientation of the element’s local coordinate axes. 
They are also invariant with respect to coordinate 
transformation (ref. 4). 

Approximations with complete polynomials may yield indi- 
vidual elements with a large number of independent forces. 
Moreover, as Spilker and Singh (ref. 24) observed, in hybrid 
method applications, high order stress field approximations 
may lead to overly rigid models. Thus, it may be necessary to 
reduce the number of independent forces in stress field repre- 
sentations while preserving ail the desired properties of the 
resulting element matrices. The compatibility condition 

v 2 (o,+o,)=O 

(suggested in ref. 24) can be imposed to reduce the number of 
independent forces. Note that equation (24) is identically 
satisfied for stress fields represented by zero- and first-order 
polynomials. By applying equation (24) to quadratic and cubic 
terms, we obtain reduced quadratic and cubic polynomials, as 
given in equations (B6) and (B7), respectively. 

Spurious Zero-Energy Modes 

The stress fields given in equations (B 1) to (B7) were derived 
without any reference to the shape or the number of kinematic 
degrees of freedom of a considered element. The number of 
independent forces, however, couldnot be chosen arbitrarily. The 
number of kinematic degrees of freedom ne and the number of 
independent forces me for element e must satisfy the relation 
me 2 ne - 1 (refs. 25 and 26), where E is the number of rigid body 
modes of the element. Pian and Chen (ref. 26) showed, however, 
that in the application of the hybrid method this condition is only 
necessary, not sufficient, for the element matrices to have the 
correct rank. They also devised a technique, based on energy 
considerations, to detect spurious zero-energy modes, and they 
developed a means to suppress them. Spilker et al. (ref. 4) have 
shown that approximating stresses with complete polynomials of 

the appropriate orderproduces the correct rank. The methodology 
of Pian andchenis tised herein to show thatintheIntegratedForce 
Method the correct rank of the element equilibrium matrix 
ensures the absence of spurious zeroenergy modes. 

The expression for internal energy A, can be rewritten by 
substituting [D] { (T} = {E} into equation (1 5)  to obtain 

1 
2 v  (25) A, = -I { ( T } ~  {&}dV 

Substituting equations (10) and (11) into equation (25) gives 
the internal energy written as 

1 
2 

A, = - {F}T [BIT {U} 

From equation (26) we can see that if the element equilibrium 
matrix has the correct rank, there are only 1 zero-energy modes 
present that correspond to rigid body modes of the element. 
Thus, spurious zero-energy modes can be eliminated by con- 
structing stress fields such that the resulting equilibrium matrix 
has the rank n,2 ne - 1. 

Element Library 

Stress fields derived in previous sections can now be used to 
develop a comprehensive finite element library for two- 
dimensional stress analysis by the Integrated Force Method. 
Let us consider both triangular and quadrilateral elements. 
Isoparametric functions (ref. 27) can be employed in equa- 
tion (9) for both types of elements. For stress field approxima- 
tions, the element’s local coordinate systems Oxy can be 
defined such that the origin coincides with the centroid of the 
element, and the local coordinate axes are parallel to the global 
axes. Such an orientation avoids rotation of the coordinate sys- 
tem, saves CPU time, and does not affect the response when 
stress fields with complete polynomial approximation are used. 

The element library is depicted in figure 1. It includes two 
elements developed by Nagabhushanam (J. Nagabhushanam, 
Indian Institute of Science, Bangalore, India, personal commu- 
nication, 1992) and an element suggested by Pian (ref. 6), 
which has four nodes and five independent forces. These 
elements are also implemented for comparison purposes. The 
element names employed here consist of three parts: the first 
three characters describe the shape of the element, the next two 
digits denote the number of element nodes, and finally, the 
number following the underscore indicates the number of 
independent forces used in the interpolation of the stress field. 
Features of the present elements are enumerated in the follow- 
ing sections. 
Three-node triungzdar elements: TRIO3-03, TRIO3-05, 

and TRI03-07.-Three-node triangles have six displacement 
degrees of freedom; thus threeindependent forces are necessary 
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to ensure the correct rank of element matrices. Three different 
stress fields were implemented. The constant stress field was 
used for element TRIO3-03. A complete linear stress field was 
implemented for element TRIO3-07. And the stress field given 
in equations @8), which is used extensively in the hybrid 
method (refs. 6 and 1 l), was used for element TRIO3-05. Note 
that element TRIO3-03 contains the minimum number of 
independent forces. Such elements will be referred to as stati- 
cally determinate elements. 

Six-node triungular.elements: TMO6-09, TH06-11, and 
TRlO6-12.Six-node elements have 12 displacement degrees 
of freedom; thus 9 independent forces are necessary in the 
stress field approximation. This allows quadratic polynomials 
to be used for stress interpolations. Complete quadratic polyno- 
mials with 12 independent forces were used for element 
TRIO6-12, and reduced quadratic polynomials with 11 inde- 
pendent forces were used for element TRIM-1 1. For compari- 
son the stress field suggested by Nagabhushanam (Indian 
Institute of Science, Bangalore, India, personal communication, 
1992; see eqs. (€39)) was implemented for element TRIO6-09. 
This stress field is represented by incomplete second-order 
polynomials; however, it identically satisfies the equations of 
equilibrium and does not possess spurious zero-energy modes. 

Four-node quaddateralelements: QUAM-05, QUAM-07, 
and QUA04-12.-Four-node elements have eight displace- 
ment degrees of freedom; thus five forces are necessary in the 
stress field approximation. The five-force field given in equa- 
tions (B8) was implemented for element QUAO4-05 and re- 
sulted in astatically determinate four-node element. A complete 
linear polynomial was implemented for element QUAO4-07, 
and a complete quadratic polynomial was used for element 
QUAO4-12. The equations of equilibrium were identically 
satisfied for all elements and no spurious zero-energy modes 
were detected. 

Eight-node quadrilateralelement: QUAO8-13, QUAO8-15, 
and QUAO8-18.-Because eight-node elements have 16 dis- 
placement degrees of freedom, they require at least 13 indepen- 
dent forces to approximate the stress field. Quadratic 
polynomials do not contain a sufficient number of terms, so 
cubic polynomials must be used. Complete cubic polynomials 
(see eqs. (B5)) were used for element QUAO8-18, and reduced 
polynomials were used for element QUAOS-15. These ele- 
ments were insensitive to rotation of the coordinate axes and 
did not possess spurious zero-energy modes. The stress field 
suggested by Nagabhushanam (lndian Institute of Science, 
Bangalore, India, personal communication, 1992; see 
eqs. (B 10)) was also implemented for element QUAO8-13. A 
quadratic field that did not satisfy the equations of equilibrium 
resulted. It also possessed two spurious zero-energy modes. 

For all elements presented here, numerical integration was 
used to calculate the element matrices. In the case of the 
triangular elements, one-point integration was used for element 
TRIO3-03, the three-point rule was used for elements with 
linear interpolation of the stress field, and the seven-point rule 

was used for elements with quadratic interpolation of the stress 
field. The locations of integration points were taken from 
reference 28. In the case of quadrilateral elements, standard 
Gauss integration was employed, with the 2 x 2 rule for 
elements with linear approximations of the stress field, the 
3 x 3 rule for elements with quadratic approximations, and the 
4 x 4 rule for elements with cubic approximations of the stress 
field. 

A patch test was performed for the present elements. Stress 
boundary conditions were prescribedforafiniteelement model 
of the test problem taken from reference 29, and all elements 
from the present library passed the patch test. 

Numerical Examples 
A number of example problems are presented in this section. 

Extensive numerical experiments were performed in order to 
establish the validity and accuracy of the Integrated Force 
Method, as well as to assess the relative performance of the 
present elements. The results obtained with present develop- 
ments are compared herein with corresponding analytical solu- 
tions. For some problems the responses obtained from the 
standard displacement method are also given in order to assess 
the potential advantages of the Integrated Force Method. The 
eight-node isoparametric element (ref. 27) was used in all 
displacement method calculations. 

Example 1: Bending of a Uniform Cantilever Beam 

Consider a cantilever beam of length L and uniform rectan- 
gular cross section d by H ,  as shown in figure 2(a). Assume that 
the beam is subjected to two distinct load cases: (1) a concen- 
trated force of intensity P, and (2) a uniformly distributed load 
of intensity q, and assume that the beam is made of a homoge- 
neous and isotropic material with a modulus of elasticity E and 
Poisson’s ratio v. By using two-dimensional finite element 
discretizations and assuming a state of plane stress, we can 
analyze the responseof the beam. Forthis case the entire element 
library was implemented in order to establish the relative 
performance of the present elements. 

The influence of element shapes on the results was also 
investigated. Finite element discretizations obtained by using 
quadrilateral- and triangular-shaped elements are shown in 
figure 2, parts (b) and (e), respectively. The support conditions 
for modeling the beam with a clamped end assumed point a to 
be completely fixed and the horizontal displacements at points 
b and c to be suppressed. The circles in parts (b) and (c) of fig- 
ure 2 denote comer nodes, and the asterisks denote midside 
nodes. In discretizations using three-node triangular elements 
and four-node quadrilateral elements, midside nodes are not 
present. The dashed lines in figure 2(b) represent quadrilateral 
elements of distorted shapes. The concentrated force P was 
modeled by using nodal forces of intensities P1 and P2 and 
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Figure 2.-A uniform cantilever beam showing geometric char- 
acteristics, loadings, and two-dimensional finite element 
models. (a) Subjected to concentrated force P and uniformly 
distributed load q. (b) Discretization using quadrilateral 
elements. (c) Discretization using triangular elements. 

assuming a parabolic distribution of the shear stress along the 
free end, the results were P1 = 0 3 ,  for elements with linear 
interpolation of geometry; and P I =  0.1P and P2 = 0.8P, for 
elements with quadratic interpolation of geometry. 

To analyze the beam for load case (l), convergence of the tip 
displacement was studied for discretizations by using various 
numbers of elements; the results are shown in figure 3 for 
triangular elements and in figure 4 for quadrilateral elements. 
The tip displacements were normalized with respect to the exact 
solution ftom the beam theory, including the average effect of 
shear stresses. Figure 3 shows that three-node triangular elements 
lead to very slow convergence of tip displacement, whereas six- 
node triangles provide accurate results with a relatively small 
number of elements and corresponding independent forces. 
The results shown in figure 3 also reveal that increasing the 
order of the stress approximation for three-node triangles does 
not improve the accuracy. 

Tip displacement convergence of quadrilateral elements was 
first studied with discretizations using elements of rectangular 
shape. The results, presented in figure 4(a), show that all eight- 
node elements provided accurate results with a relatively small 
number of independent forces. Element QUAO8-13, however, 
led to spurious zero-energy modes. Some additional degrees of 
freedom had to be suppressed in order to obtain a stable struc- 
ture. For the present analysis, vertical displacements at points 

>- 
0.6 

C 

E 
8 a - 2 0.4 
5 

0.2 

0.0 

+ TR106-12 
--+.-- TR106-11 
- f -  TRlO6-09 

TR103-07 --D-- 
- TR103-05 

+ TR103-03 

- 

- 

0 4 8 12 16 20 24 
Number of elements 

Figure 3.4onvergence study of tip displacement of 
cantilever beam using triangular elements. 

b and c were set to zero. These additional restraints resulted in 
convergence in the opposite direction for element QUAOS-13. 
Figure 4(a) also shows the results for four-node quadrilateral 
elements. Element QUAO4-05 provided a fast convergence, 
whereas elements QUAO4-07 and QUAO4-12, which use 
higher order stress approximations, produced stiff structures. 
Note, however, that both of these elements provide results 
within 0.5-percent error for a 24-element model. 

The effect that distortion of the element shapes has on the 
results was also studied. The distorted meshes were obtained by 
moving the comer nodes a distance of 1, = 0.2& as shown in 
figure 2(b), where L, is the length of the corresponding 
rectangular element. The results (see fig. 4(b)) show that four- 
node elements, especially element QUAO4-05, are signifi- 
cantly less accurate. The eight-node elements, however, are 
almost insensitive to distortion in the model. 

Now let us consider stress distributions on the beam for load 
case (2). The intensity of the distributed load is taken as 
q = 12 kNlm; the length as L = 12 m; the cross section 
dimensions as d = H =  1 .O m; and Poisson’s ratio as v = 0.3. The 
values for normal stresses oand shear stresses zalong the line 
y = -yg = -0.2887 m, which were obtained by using eight-node 
quadrilateral elements, are shown in figure 5 along with those 
calculated by using the beam theory. The locations shown in 
figure 5 coincide with the Gauss points for the 2 x 2 integration 
rule, which have been shown to be optimal sampling points for 
stress calculations in the displacement and hybrid methods 
(ref. 4). Figure 5 shows there is good agreement between the 
present results and the analytical solution and that results 
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Figure 4.4onvergence study of tip displacement of 
cantilever beam using quadrilateral elements. (a) Regular 
meshes. (b) Distorted meshes. 
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Figure 5.-Stress distribution along line y = -yg of cantilever 
beam subjected to uniformly distributed load. (a) Normal 
stress. (b) Shear stress. 

obtained with element QUAOS-13 are in excellent agreement 
with the corresponding analytical solutions. However, caution 
must be exercised in using this element because of the presence 
of spurious zero-energy modes. 

Example 2: Pure Bending of a Circular Arch 

A circular arch of radius r,, and rectangular cross section d by 
H, as shown in figure 6(a), is considered next. The arch is 
assumed to be clamped at 8 = OD, loaded with a concentrated 
moment of intensity M at 8 = 90" (where 8 is an angular 
coordinate), and made of a homogeneous and isotropic mate- 
rial with parameters E and v. This example is presented with the 
specific purpose of demonstrating the validity of the present 
elements in modeling domains with curved boundaries. A state 
of plane stress was assumed, andthe arch was modeled by using 
two-dimensional finite element discretizations, as shown in 
figure 613). The boundary conditions for the clamped end were 
the same as those applied to the cantilever beam in the previous 
example. Thecircles andasterisks showninfigure6(b) havethe 
same meaning as in Example 1. The nodes denoted by asterisks 
were not present when the arch was discretized with four-node 
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(b) 
Figure 6.-A circular arch subjected to concentrated 

moment M . (a) One-dimensional model of a circular 
arch. (b) Two-dimensional finite element 
discretization. 

quadrilateral elements. In the finite element discretization, 
radii r, and rb denote the inner and outer contour, respectively, 
with r, = r, - 0.5 H, and rb = r, + 0.5 H. The concentrated 
moment M was modeled by using the concentrated forces of 
intensities PI, P2, and P3, which correspond to the exact stress 
distribution due to the concentrated moment. 

Let us first analyze the arch for r, = 10 m and rb = 12 m. Such 
an arch may be characterized as a thin arch (ref. 4). The remain- 
ing parameters are taken to be d = 1.0 m; E = 21x107 kNim2; 
v = 0.3; and M = 600.0 kNm. The intensities of concentrated 
forces were calculated as PI = 270.3 kN, P2 = 56.3 kN, and 
P3 = 326.6 kN for discretizations with eight-node elements, and 
asp1 = P2 = 300 kN for discretizations with four-node 
elements. 

Results obtained with the present quadrilateral elements in a 
convergence study of the horizontal component u of the tip 
displacement, along with those obtained with an eight-node 

displacement isoparametric element, are shownin figure7. The 
tip displacements were normalized with respect to the exact 
solution, which was calculated from the plane stress theory 
(ref. 23). The present elements, especially those with a quad- 
ratic interpolation of geometry, pedormed well. Note that the 
results for element QUAO4-05 were obtained with an element 
local coordinate system such local x-axis is defined by 
the element centroid and the center of one of the element sides. 
The results obtained with the local axes parallel to the global 
axes are not shown because the responses exhibited unstable 
oscillations. This behavior, which is due to representing the 
stress fieldin terms of incomplete polynomials, reveals the high 
sensitivity of element QUAM-05 to the orientation of local 
coordinate systems. It also demonstrates the benefits of 
employing stress field representations composed of complete 
polynomials in the analysis of general two-dimensional 
problems. 

The displacements u along the line r= r, were calculated next 
by using the discretization with six eight-node elements (see 
fig. 8). Exact displacements, calculated from the beam theory, 
are also shown in figure 8 for comparison. Again, theresults are 
in good agreement. 

Stress distributions for a circular arch were also calculated. 
The results for normal stresses or and o, along the line 
r= rg = 10.423 mare shown in figure 9; they are compared with 
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Figure 7.4onvergence study of tip displacement u of a 
thin circular arch. 
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Figure 8.-Displacement distribution along line r= q, of thin 
circular arch. 
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Figure 9.4tress distribution along line r= % of thin circular 
arch. (a) Radial stress. (b) Tangential stress. 
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Figure 10.4tress distribution along line r= % of a thick 
circular arch. (a) Radial stress. (b) Tangential stress. 

corresponding solutions from the displacement formulation 
and with the exact solution (ref. 23). Elements QUAO8-15 and 
QUAO8-18 performed slightly better than the displacement 
element. Figure 9 also shows that element QUAO8-13 does not 
provide good stress predictions in this case. The stress field 
used for this element was obviously constructed to exactly 
model the beam bending. However, it does not satisfy Navier' s 
equations of equilibrium, and it does contain spurious zero- 
energy modes for some configurations. These characteristics 
make element QUAO8-13 unsuitable for modeling general 
problems of two-dimensional elasticity. 

Stress distributions were also calculated for an arch with 
dimensions r, = 1.0 m, rb = 2.0 m, rg = 1.211 m, and M = 
300.0 kNm, with the remaining parameters being the same as 
before. Such an arch can be characterized as a thick arch. The 
concentrated forces used to model the moment M for this case 
were P I  = 338.2 kN, Pz = -73.1 kN, and Pg = 265.1 kN. Normal 
stresses 0, and qwerecalculatedby usingthepresent eight-node 
elements; the results, together with corresponding analytical 
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solutions, are shown in figure 10. Notethat elements QUAO8-15 
and QUAOS-18 provide more accurate results than the 
isoparametric displacement element, especially for radial stress 
0, whereas element QUAO8-13 exhibits the same problems as 
were observed for the thin arch. Also note that the reduced 
number of independent forces in element QUAO8-15, as com- 
pared to element QUAO8-18, did not lead to a loss of accuracy. 

Example 3: A Rectangular Plate Under Sinusoidal Load 

A rectangular plate with dimensions 2L by 2u is shown in 
figure 11 along with its support conditions. The plate is sub- 
jected to a vertical load of intensity 4(x) = qo sin(&). Since 
the geometry and the loading of the plate are symmetric with 
respect to the vertical axis, only half of the plate need be 
analyzed. The plate’s finite element discretization using quad- 
rilateral elements is also shown in figure 11. A state of plane 
stress was assumed for this analysis. The numerical values of 
the parameters were taken as E = 21.0x107 kNlm2, v = 0.3, 
L = 10.0 m, a = 5.0 m; and qo = 10.0 kNlm2. For comparison, 
the analytical solution of the problem was derived by following 
the procedure outlined in reference 23; this derivation is given 
in appendix C. 

The stress response was calculated for locations lying along 
the line AB by using both four- and eight-node quadrilateral 
elements, that is, with a mesh of 6 x 6 four-node elements and 
4 x 4 eight-node elements, respectively. The stresses were first 
calculated for locations corresponding to the optimal sampling 
points for the displacement and hybrid methods. These loca- 
tions correspond to Gauss integration points for l x l point 
integration when four-node elements are used, and 2 x 2 point 
integration when eight-node elements are used (ref. 24). Fig- 
ures 12 and 13 show the results for four- and eight-node 

I 

N X N  elements 
_ - - _ _ _ _  

Figure 11 .-A rectangular plate under sinusoidal loading. 

elements, respectively. These results agree well with the ana- 
lytical solutions given in equations (Cl), especially those for 
the eight-node elements. The present elements performed 
slightly better than the displacement formulation. 

The influence of the location of sampling points on the 
accuracy of stress predictions was also investigated. The 
stresses were calculated by using eight-node elements at loca- 
tions corresponding to 3 x 3 Gauss integration points. The 
results, shown in figure 14, indicate that the present elements 
are less sensitive to the location of sampling points than the 
corresponding displacement elements. It may also be con- 
cluded that the present elements provide better overall stress 
approximations within the element domains. 

25 Element type 
20 0 QUAO4-12 

0 QUA04-07 
A QUA04-05 

15 

10 Exact 

(a) Distance along x-axis, m 

(b) Distance along x-axis, m 

0 2 4 6 8 10 
(c) Distance along x-axis, m 

Figure 12.4tress distribution along line AB of a rectangu- 
lar plate as determined by using four-node elements at 
1 -point Gauss integration locations. (a) Normal stress a, 
(b) Normal stress ay (c) Shear stress T~ 
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€ 0  g o  0 
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Distance along x-axis, m (b) Distance along x-axis, m (b) 

0 2 4 6 8 10 
(c) Distance along x-axis, m (a Distance along x-axis, m 

Figure 1b-Stress distribution along line AB of a rectangu- 
lar plate as determined by using eight-node elements at 
2-point Gauss integration locations. (a) Normal stress a, 
(b) Normal stress uy (c) Shear stress T~ 

Figure 14.C"ess distribution along line AB of a rectangu- 
lar plate as determined by using eight-node elements at 
3-point Gauss integration locations. (a) Normal stress a, 
(b) Normal stress uy (c) Shear stress ~;(r 

Displacement calculations for the plate were also performed. 
The horizontal component u of displacement was calculated at 
element nodes lying along the line x = 0. In figure 15 the results 
are compared with the exact solution given in equations (C2). 
A good agreement of the results is shown. 

Example 4: A Rectangular Plate With a Circular Hole 
Under Uniform Tension 

A rectangular plate of dimensions 2a by 2b with a circular 
hole of radius r, as shown in figure 16(a), was analyzed. The 
plate was assumed to be subjected to a uniform tension of 
intensity q along the Ox-axis and made of a homogeneous and 
isotropic material. Because of the double symmetry of the 

geometry and the loading of the plate, only a quarter of the plate 
@e., that bound by the arc AB and lines BC, CD, DE, and EA) 
was discretized with finite elements. Finite element 
discretizations using quadrilateral and triangular elements are 
shown in figure 16, parts (b) and (c), respectively. The symme- 
try boundary conditions u = 0 along the line AE, and v = 0 along 
the line BC were applied. A state of plane stress was assumed 
in the analysis. 

The stress concentration factor at point A of the plate was 
calculated for a = 48 cm, b = 24 cm. and r = 6 cm by using the 
entire element library. The results, given in table I, are com- 
pared with the adjusted stress concentration factor calculated 
by using the expression from reference 30 @e., k = 3.2126 for 
the given dimensions of the plate). A very good agreement for 

12 



0.8x10-6 

Element type 

0 QUA08-18 
0 QUA08-15 
A QUAO8-13 
0 Displacement 

-0.6 - 

-0.8 I I I 
- 5 4 - 3 - 2 - 1  0 1 2  3 4 5 

Distance along y-axis, m 

Figure 15.-Horizontal displacement along line x= 0 of 
rectangular plate. 

the stress concentration factor was achieved with the elements 
from the present library, especially with those with quadratic 
interpolation of geometry, as depicted in table I. This example 
further demonstrates the accuracy of the Integrated Force 
Method in stress calculations, particularly at locations that do 
not coincide with optimal sampling points. 

Discussion 

The validity and accuracy of the finite element library 
presented in this paper were demonstrated through numerical 
examples. Both one- and two-dimensional problems of elastic- 
ity were analyzed, and from the numerical results previously 
presented, a comparison can be made of the element perform- 
ances. A careful examination of numerical results reveals that 
elements with quadratic interpolation of geometry performed 
better than those with linear interpolation of geometry. This is 
only partly due to the higher order of approximation of the 
stress fields, and thus, larger number of independent forces. 
Such a conclusion is supported by the fact that an increase in the 
number of independent forces in three-node triangular elements 
does not result in improved accuracy, and that higher order 
approximations of stress fields for four-node quadrilateral 
elements may result in overly rigid models. We may conclude 
that the interpolations of stress and displacement fields cannot 
be chosen arbitrarily, but must be compatible with stress-strain 
law. Moreover, elements QUAO8-18 and QUAO8-15 exhibited 
better overall performance than element QUA08-13. The stress 
fields used for these two elements are represented by complete 

Figure 16.-Finite element discretizations of rectangular 
plate with circular hole in uniform tension. (a) Two- 
dimensional plate. (b) Discretization with quadrilateral 
elements. (c) Discretization with triangular elements. 

TABLE 1.-STRESS CONCENTRATION FACTOR AT 
LOCATION A FOR THE PLATE WITH A HOLE 

elements factor 

TRIO3-03 2.54649 
TRIO3-05 2.54649 
TRIO3-07 259 2.54649 

TRIo6-09 
TRIO6-11 
TRIO6-12 

QUAW-05 
QUAO4-07 
QUAO4-12 

QUAO8-13 
QUAO8-15 
QUAO8-18 

1; 1 
210 
360 

390 

30 1 E 

3.25875 
3.15126 
3.10322 

2.74766 
2.89305 
2.96215 

3.00314 
3.25266 
3.26137 
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third-order polynomials, which produce elements that are in- 
variant with respect to transformation of the local coordinate 
systems and that are free of spurious zero-energy modes. These 
stress fields also identically satisfy the equations of equilib- 
rium. Thestress fieldusedforelement QUAO8-13, ontheother 
hand, was represented by second-order polynomials, which 
yielded two spurious zero-energy modes for the rectangular 
configuration of the element. In addition, it did not satisfy the 
equations of equilibrium, and thus led to erroneous stress 
calculations in Example 2. 

For some problems, good results were obtained with element 
QUAM-05, which has a very small number of unknown 
independent forces. The tip displacement convergence study in 
Example 2 revealed, however, that this element is sensitive to 
the orientation of coordinate axes and may not always be 
reliable in the analysis of domains with arbitrary geometric 
configurations. Moreover, element QUAO4-05 provides accu- 
rate stresses only in the centroid, which may not always suffice. 
Elements with quadratic interpolation of geometry produce 
more accurate stress predictions at the optimal sampling points 
and at arbitrary locations within the element. Similar conclu- 
sions can be drawn for triangular elements. 

The Integrated Force Method was also compared with the 
assumed displacement based finite element method. The re- 
sults presented here reveal that the Integrated Force Method is 
better overall for stress calculations and provides displacement 
predictions of comparable accuracy. 

Concluding Remarks 
A finite element library was developed to analyze two- 

dimensional structural mechanics problems by the Integrated 
Force Method. Triangular- and quadrilateral-shaped elements 
capable of modeling domains with arbitrary geometric con- 
figurations were presented. The displacement and stress fields 
were independently approximated. Displacement interpolation 
was performed as in the standard displacement method, and a 
procedure was developed to derive the stress interpolation 

functions in terms of complete polynomials of the required 
order. An Airy stress function was written as a complete 
polynomial of orderp that containsp + 1 independent constants. 
The definitions of stress components in terms of stress func- 

t to derive the expressions for stresses. 
Elimination of the dependent constants from the expressions 
for stresses yielded stress fields expressedin tern of complete 
polynomials of orderp - 2. Stress fields thus defined identically 
satisfied the equations of equilibrium. The resulting element 
matrices had the correct rank and were insensitive to the 
transformation of local coordinate systems. 

The present elements were applied to solve a variety of 
problems in two-dimensional elasticity. Comparisons were 
made with corresponding analytical solutions, and there was 
good agreement of the results. A series of numerical tests were 
performed in order to assess the relative performances of the 
present elements. These studies showed that elements with 
quadratic interpolations of geometry and displacements pro- 
vide reliable predictions for all problems. The four-node quad- 
rilateral elements performed well for some problems. Element 
QUAO4-05 was shown to provide good results for a small 
number of unknown quantities, but it was sensitive to the 
orientation of the local coordinate system. This condition 
restricts its range of application. 

The Integrated Force Method was also compared with the 
standard displacement method. The results presented here 
reveal that overall the Integrated Force Method performs better 
in stress calculations and exhibits an accuracy in displacement 
predictions comparable to the displacement method. These 
results c o n f i i  that the Integrated Force Method can be used 
successfully and efficiently in structural analysis and provide 
justification for efforts to incorporate the force method of 
analysis into general purpose finite element programs. 

Lewis Research Center 
Cleveland, Ohio 
July 17, 1995 
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Appendix A 

complementary energy 

potential energy 

plate dimensions 

element equilibrium matrix 

portion of system equilibrium matrix correspond- 
ing to modes with prescribed displacement bound- 
ary conditions 

m 

me 

rNl 

NS number of prescribed displacements 

Nt 

n 

number of system independent forces 

number of element independent forces 

matrix of displacement interpolation functions 

total number of displacement degrees of freedom 

number of system equilibrium equations 

portion of systemequilibriummatrix correspond- ne 
ing to modes where external loads are prescribed 

number of element displacement degrees of 
freedom 

compatibility matrix 

arbitrary constants 

nr 

P,P1,P2,P3 intensity of concentrated force 

rank of element equilibrium matrix 

{PI compliance matrix of material 

cross-sectional dimension 

modulus of elasticity 

system vector of independent forces 

vector of element independent forces 

generalized force coefficients 

system flexibility matrix 

system equivalent load vector 

{P*I 

{Pel 

total of right side of system of equations 

vector of element equivalent nodal loads 

P 

e 40 

P I  

order of polynomial 

intensity of distributed load 

vector of support reactions 

r number of compatibility conditions 

element flexibility matrix 

cross-sectional dimension 

n x m deformation matrix 

length 

matrix of differential operators that defines strain 
displacement relationship {UI displacement vector 

ra,rb,ro radial coordinates 

[SI system matrix 

{UI 

We1 

vector of system unknown nodal displacements 

vector of element nodal displacements 

number of element rigid body modes displacement components 

distance comer node is moved V volume 

intensity of moment X9Y Cartesian coordinates 
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[YI stress interpolation matrix 

% coordinate of Gauss point 

rzi %I [NI 

{Pe l  vector of element deformations 

{ P o l  vector of initial deformations 

yv component of strain vector 

{%I effective deformation vector 

{&I strain vector 

V 

components of strain vector 

angular coordinate 

Poisson’s ratio 

stress vector 

components of stress vector 

component of stress vector 

linear functions of constants 

Airy stress function 
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Appendix B 

Expressions for Stress Fields 

(a) Full Polynomials Derived from the Stress h c t i o n  
- constant terms: 

- linear terms: 

- quadratic terms: 

- cubic terms: 

- full cubic polynomial 



(b) l?d  Poly~omials Reduced Using the Condition V2(ux + q,) = 0 
- quadratic terms: 

(c) Stress Field Used for the Element qUA04,OS 
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Appendix C 

Analytical Solution for the Rectangular Plate soidal Load 

The analytical solution of the problem presented in Exam- 
ple 3 is given here. It can be derived by using the Fourier series 
outlined in reference 23. The stress components ox, a,,, and zxu 
are given as 

C1coshay+C2sinh ay+C3 ay 

ay 

C1sinhay+C2cosh ay+C3 

where C1 =po(sinh aa -I- au co 
au sinh aa)lD2; C3 = p o a  cosh C4 = -pea sinh ad 
D1; with D1= 2 ( 2 a u  + sinh 2 m ) ,  0 2  = d(2aa - sinh 2 m ) ,  
a= d2L,  andxandy are coordinates of 
asdefinedinfigure 11. 

The displacement u is calc 
displacement relations as follows: 

a 
u = --[C1(l + v)coshay + C2(1 + v)sinhay + C3 

E 

1 (psinh ay + (1 + v)ycoshay 

(C2) 

ay + y cosh ay 

19 



References 

1. Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill BookCo., 
New York, 1977. 

2. Cook, R.D.: Concepts and Applications of Finite Element Analysis. John 
Wiley & Sons, New York, 1981. 

3. Gallagher, R.H.: Finite Element Analysis: Fundamentals. Prentice-Hall, 
Inc., Englewood Cliffs, NJ, 1975. 

4. Spilker, R.L.; Maskeri, S.M.; and Kania, E.: Plane Isopmametric Hybrid- 
Stress Elements: Inv+ance and Optimal Sampling. Int. J. Num. Meth. 
Engng., vol. 17, 1981, pp. 1469-1496. 

5. Kaneko, I.; Lawo, M.; and Thierauf, G.: On Computational Procedms 
for the Force Method. Int. J. Num. Meth. Engng., vol. 18, 1982, 

6. Pian, T.H.H.: Derivation of Element Stiffness Matrices by Assumed Stress 
Distributions. AIAA J., vol. 2, July 1964, pp. 1333-1336. 

7. Pian, T.H.H.; and Tong, P.: Basis of Finite Element Methods for Solid 
Continua Int. J. Num. Meth. Engng., vol. 1,1969, pp. 3-28. 

8. Pian, T.H.H.: A Historical Note About ‘Hybrid Elements’. Int. J. Num. 
Meth. Engng., vol. 12, 1978, pp. 891-892. 

9. Pmemieniecki, J.S.: Theory of Matrix Structural Analysis. Dover Publica- 
tions, Inc., New York, 1985. 

10. Martin, H.C.: Introduction to Matrix Methods of Structural Analysis. 
McGraw-Hill Book Co., New York, 1966. 

11. Robinson, J.: IntegratedTheory of Finite Element Methods. John Wiley & 
Sons, London, 1973. 

12. Patnaik, S.N.: An Integrated Force Method for Discrete Analysis. Int. J. 
Num. Meth. Engng., vol. 6,1973, pp. 237-251. 

13. Patnaik, S.N.: The Integrated Force Method Versus the Standard Force 
Method. Comp. Structures, vol. 22, no. 2,1986, pp. 151-163. 

14. Patnaik, S.N.; Berke, L.; and Gallagher, R.H.: Integrated Force Method 
Versus Displacement Method for Finite Element Analysis. Comput. 
Struct, vol. 38, no. 4, 1991, pp. 377-407. 

15. Patnaik, S.N.: The Vaxiational Energy Formulation for the Integrated 
Force Method. AIAA J., vol. 24, no. 1, 1986, pp. 129-137. 

16. Patnaik, S.N.; and Joseph, K.T.: Compatibility Conditions From Defor- 
mation Displacement Relationship. AIAA J., vol. 23, Aug. 1985, 

pp. 1469-1495. 

pp. 1291-1293. 

atibility Matrix in 
theIntegratdForceMethod. Comput.Meth.App.Mech.Engng.,vol. 55, 
no. 3,1986, pp. 239-2 

aik, S.N.: General Purpose Program to 
Generate Compatibility Matrix for the Integrated Force Method. AIAA 
J., vol. 28, Oct. 1990, pp. 1838-1842. 

19. Patnaik, S.N.; Berke, L.; and Gallagher, RH.: Compatibility Conditions 
for Structural Mechanics for Finite Element Analysis. AIAA J., vol. 29, 
May 1991, pp. 820-829. 

20. Patnaik, S.N., et al.: Improved Accuracy for Finite Element Structural 
Analysis Via a New Integrated Force Method. NASA TP-3204,1992. 

21. Patnaik, S.N.; and Yadagiri, S.: Frequency Analysis of Strnctures by 
IntegratedForceMethod. J. SoundVib., vol. 83, no. 1,1982, pp. 93-109. 

22. Patnaik, S.N.; and Gallagher, RH.: Gradients of Behaviour Constraints 
and Reanalysis Via the Integrated Force Method. Int. J. Num. Meth. 
Engng., vol. 23,1986, pp. 2205-2212. 

23. Timoshenko, S.P.; and Goodier, J.N.: Theory of Elasticity. McGraw-Hill 
Book Co., New York, 1970. 

24. Spilker, R.L.; and Singh, S.P.: Three-Dimensional Hybrid-Stress 
Isopmametric Quadratic Displacement Elements. Int. J. Num. Meth. 
Engng., vol. 18, 1982, pp, 445-465. 

25. Tong, P.; and Pian, T.H.H.: A Variational Principle and the Convergence 
of a Finite-Element Method Based on Assumed Stress Distribution. Int. 
J. Solids Struct., vol. 5, 1969, pp. 463-472. 

26. Pian, T.H.H.; and Chen, D.: On the Suppression of Zero Energy Deforma- 

27. Ergatoudis, I.; Irons, B.M.; andZienkiewics, O.C.: Curved, Isopmametric, 
“Quadxilateral” Elements for Finite Element Analysis. Int. J. Solids and 
Struct., vol. 4, 1968, pp. 3142. 

28. Dunavant, D.A.: High Degree Efficient Symmetrical Gaussian Quadra- 
ture Rules for the Triangle. Int. J. N w .  Meth. Engng., vol. 21, 1985, 

29. MacNeal, RH.; and Harder, RL.: A Proposed Standard Set of Problems to Test 
Finite Element Accuracy. FUrte EIem AuaL Des., vol. 1, Apr. 1985, pp. 3-20. 

30. Romk, R.J.; and Young, W.C.: Formulas for Stress and Strain. McGraw- 
Hill Book Co., New York, 1975. 

17. Pamaik, S.N.; and Joseph,K.T.: Generati 

18. Nagabhushanam, I.; 

. tion Modes. Int. J. Num. Meth. Engng., vol. 19,1983, pp. 1741-1752. 

pp. 1129-1148. 

20 



Form Approved 
REPORT DOCUMENTATION PAGE I OMB No. 0704-0188 

. AGENCY USE ONLY (Leave blank) 

I 
%blic reporting burden for this collection of informatton is estimated to average 1 hour per response, including the 8me for reviewing instructions, searching existing data soums, 
lathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
mllection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
)ads Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 

March 1996 Technical Memorandum 

I2a. DlSTRlBUTlON/AVAlLABlLITY STATEMENT 

I I 

I. TITLE AND SUBTITLE 

Development of Finite Elements for IItYo-Dimensional Structural Analysis Using 
the Integrated Force Method 

i. AUTHOR(S) 

12b. DISTRIBUTION CODE 

Igor Kaljevic’, Surya N. Patnaik, and Dale A. Hopkins 

OF REPORT 
Unclassified 

’. PERFORMING ORGANIZATION NAME@) AND ADDRESS(ES) 

OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135-3191 

I. SPONSORlNG/MONlTORING AGENCY NAME(S) AND ADDRESS(ES) 

National Aeronautics and Space Administration 
Washington, D.C. 20546-0001 

5. FUNDING NUMBERS 

WU-505-63-53 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

E-9240 

10. SPONSORlNGMONlTORING 
AGENCY REPORT NUMBER 

NASA TM-4655 

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390. 
13. ABSTRACT (Maximum 200 words) 

The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This 
method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing 
equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional 
problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling 
arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing 
the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite 
elements are independently approximated. The displacement field is interpolated as it is in the standard displacement 
method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the 
definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polyno- 
mials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices 
are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body 
modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are 
solved by using the present library, and the results are compared with corresponding analytical solutions and with results 
from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well 
with analytical and displacement method results but also outperforms the displacement method in stress calculations. 

14. SUBJECT TERMS 115. NUMBER OF PAGES 

Integrated Force Method; No-dimensional analysis; Element library e 16. PRICE CODE 

I 

17. SECURITY CLASSIFICATION I 18. SECURITY CLASSIFICATION I 19. SECURITY CLASSIFICATION I 20. LIMITATION OF ABSTRACT 


